Punjo is not Pona : Not All Solar Panels Are Equal

Nii koi’s wife was pregnant with their third child, and as usual her food cravings seemed to change by the hour. This morning she wanted Pona yams with smoked fish light soup. Being a great husband Nii Koi dashes  to the nearby  grocery down the road  and ends up being sold Punjo yams ,a lower priced ,larger variety of yam. Most Ghanaians prefer the higher sugar content and finer texture in Pona yams even though they can be quite pricey especially when yams are not in season. Thinking he had found a great deal Nii Koi proceeded to complete his assignment.

His wife was very furious, I will not eat this yam

“All yam be yam he exclaimed” and she hissed back, Punjo is not Pona

To cut a long story short his wife refused to eat the Punjo yams and insisted that he get Pona yams to satisfy her cravings

Punjo is not Pona : Not All Solar Panels Are Equal,JINKO SOLAR

Jinko Solar panels are durable and efficient

Selling Solar in a harsh economic climate like Ghana can be quite challenging ,it’s not unusual for prospective customers to ask questions such as  “why your solar panels cost Ghc X when so and so in the market is selling it for so much less at Ghc. Y.”

The simple answer is – Not All Solar Panels Are Equal.

Punjo is not Puna : Not All Solar Panels Are Equal

So when you compare prices for solar panels (and we do encourage you to shop around), you do need to pay attention to 2 key aspects of the panel’s quality – GRADE and MANUFACTURER TIER.

Grade & Manufacturer Tier

GRADE refers to the quality of solar cell used in the solar panel, and are categorized as A, B, C, or D.  “Grade A” cells are the highest quality, in that they are tested to ensure there are no micro-cracks in the solar cell, and all the cells are of the same type. The quality diminishes for grade B, which may have micro cracks and not all cells are of the same type (they sometimes mix and match). Grades C and D are much worse quality with larger cracks and chips, and the cell mismatch is even worse since typical solar cell will be exposed to sunlight throughout its lifetime. Sunlight contains harmful ultraviolet (UV) light that deteriorates all materials, including solar cells. The tiny flaws in the material become worse after prolonged exposure to sunlight, and its power output reduces over time.As a grade A cell has the least flaws to start with, its deterioration will be the slowest.

MANUFACTURER TIER refers to how automated a manufacturer is in its manufacturing process, its manufacturing volume, how long it has been in the industry, and how much it invests in R&D. There are 3 tiers to classify this:

Punjo is not Pona : Not All Solar Panels Are Equal,,jinko solar panels installation

certified engineers installing Jinko Panels in the heart of Ghana capital city,Accra

Tier 1 manufacturers are the top 2% of solar manufacturers, normally producing over 1 GW of solar panels in a year. They are vertically integrated meaning they make their own cells and wafers, invest heavily in R&D, and have advanced robotic processes for manufacturing,and have been manufacturing solar  panels for longer than 5 years. Tier 2 manufacturers are small to medium scale manufacturers, with little or no investment in R&D. They only use partial robotics in their manufacturing process, and rely more on manual work from human production lines.

They have been producing panels for 2 to 5 years. Tier 3 manufacturers are actually just Assemblers – i.e. they assemble other manufacturer’s cells into a panel. This is 90% of the new solar PV companies, with no investment in R&D, and they use human production lines for manual soldering of solar cells instead of advanced robotics. They have been assembling solar panels for 1-2 years. You get best (and consistent) results from Grade A panels manufactured by a Tier 1 manufacturer.

They may cost a little more on a per-watt basis, but when you consider the energy output and the longevity of their panels, you actually get more energy out of Tier 1 / Grade A panels than anyone else. And ultimately, you have to ask yourself what matters to you more — the total number of watts of a solar panel, or the actual kWh (units) of energy produced by the panel?That’s why we at Nocheski Solar use Grade A solar panels from Tier 1 manufacturers like Jinko   Solar and Victron Energy which ensures the best overall value in terms overall electricity output and long-term high quality.Hope this helps you when you compare solar panel prices.Let us know your feedback.All that being said, its  prudent to watch out for unscrupulous industry players  who may be selling counterfeited solar products but that is another whole discussion for another day.

Punjo is not Puna : Not All Solar Panels Are Equal

 

 

 


Should i wait for solar prices to improve in Ghana? As the cost per Kw/h of energy from Electricity company of Ghana (E.C.G) continues to rise each year, many Ghanaians are seeking long-term alternatives to reduce their energy bills.

Solar energy is a great alternative to drawing power from the electric grid, and saves homeowners substantially in the long run while also benefiting the environment. More so affordable solar power prices will improve Ghana electricity supply .

Considering low income levels in Ghana , the question that often comes up is can I afford it ? Should I wait ? That is what most people ask themselves when thinking about whether or not they should switch to solar. But the real question they should be asking themselves is: how soon do I want to start saving money?

A Victron 5kva-2.5kwp solar inverter power system installed by Nocheski solar in Accra-Ghana

Installing solar power in your home is one step further into the renewable energy direction and also one step closer to keeping your wallet full. But is current solar technology good enough to use now or should you wait until newer technology comes out?

We’ll answer your question with a more important one: why wait? Why the hesitation when solar can be saving you money right now?

There will always be newer technology and newer versions of everything, from computers to fridges, so you may be hesitant to jump in. But why deny yourself the benefits you can get now by making the switch to solar power? Especially when the technology we already have today will save you money now and in the future. Simply put, you can’t start saving the money that comes from switching to solar until you start using solar technology.

The most obvious factor that impacts solar power prices in Ghana is the size of the system you purchase. Generally speaking, the larger the solar panel array, the more costly it will be. However, this doesn’t always translate to increased electricity savings.

https://www.youtube.com/watch?v=yPnz1RGIqFU

The quality of the solar panels you purchase as well the type of hardware and accessory equipment you use can boost performance. Optimizing the efficiency of your solar panel system will depend on a variety of factors, including how much electricity you use, the build of your roof, the local weather conditions, and more.

Did you pass on purchasing your smartphone because you knew there would be an even better one next season?  Probably not, because you wanted to use that technology now. Same goes for solar power; and you’ll be saving money, which is something we can all say yes to.The first step is to look for a professional solar power installer in Ghana.This will be followed by the right quality at the right prices

It’s worth it to look into it – especially when all it takes is a quick phone call

Contact our Victron Energy product specialist at Nocheski solar   for exciting deals for staff of reputable organizations in Ghana on 0244 270 092 or 0303 211 743

 


Pure solar water: Generating Clean Drinking Water from Air

The leapfrog in solar panels technology addresses the global issue of water supply by providing clean, drinkable water. Think about it, we are all surrounded by air, a form of vapour, water’s gaseous, evaporated state. A new form of solar atmospheric water generators attempts to harness the power of the sun and create clean, drinkable water from the air.

The new type of solar panel could turn moisture in the air to clean drinking water and would be a big boon to families in cities like Guayaquil, Ecuador where there are no city pipes. It could save time for the women in sub-Saharan African who spend an estimated 40 billion hours a year collecting water. The clean water generated could eliminate water-borne diseases.

The new solar panels, which are not for retail sale yet, can be installed at home or office. The panels are said to be self-contained and work on a special membrane which can absorb the water molecules. The water is then treated with minerals to add fresh taste and then stored in on-board reservoirs.

What is the underlying premise of creating clean water? The material which is created reportedly can absorb water from the air. What would happen if you leave a bowl of salt open? It would become clumpy due to the moisture. The solar panel works on the same premise, where the water is evaporated to purify it, and further remove pollutants.

The solar panel technology would cost around $2,900, with no installation costs, and produce around ten small water bottles daily, and is expected to last for around ten years. A single panel could reportedly provide cooking water for a family of four inclusive of hospitals or businesses, which can be scaled up with the use of multiple panels.

When are we getting this new technology in Ghana? We dont know for now

 

Source: SolarPower.com Editorial Team


The fronius range of inverters are very suitable for grid-tie solar power systems and are currently being deployed all over the country by Nocheski solar

Ghana:Organizations to shift to solar net metering system

Mr Kwabena Otu Danquah, the Head of Renewable Energy Promotion of the Energy Commission, has advised organisations to shift to the solar net metering system to save them from getting into the higher consumption rate bracket.

 

He said net metering was a mechanism that fed the national grid with surplus solar energy from households while assisting them to save cost and urged consumers to take advantage of it.

Mr Danquah was speaking at a two-day solar industry workshop in Accra organised by the Netherlands Development Organisation (SNV) and the Association of Ghana Solar Industries (AGSI) on current initiatives and opportunities in Ghana’s energy sector.

He said the Energy Commission, in collaboration with the Electricity Company of Ghana, had installed 35 net metering systems in various homes in Accra on a pilot basis.

“We are waiting for the Public Utilities Regulatory Commission (PURC) for the gazette to ensure that the new solar metering system fully takes off in Ghana,” he said.

Mr Danquah said the Energy Commission had created the enabling environment to ensure the attainment of enough renewable energy targets by 2020.

grid-tie solar power system with battery bank using victron and fronius systems

He said by the provision of the Renewable Energy Act 2011, 832, the Energy Commission, in collaboration with the Ghana Standards Authority, would enforce the law on the importation of renewable energy products that would meet good standards and certification.

He said: “The solar technology we know are perfect but the installation is the problem, hence the need for the Energy Commission to license all electricians and develop a training curriculum to train technicians to ensure good certification of solar.”

Mr Emmanuel Aziebor from the Netherland Development Organisation, a resource person, urged stakeholders in the solar industry to come out with substantive business models to convince the microfinance companies to invest in solar energy.

He advised the technical experts to support and sustain the technology whilst training more technicians on it.

Mr Aziebor said: “We need to have people prepared, trained and exposed to solar energy while looking at the local production of the products in future.”

Mr Eric Omane Acheampong, the President of AGSI, advised the members to develop activities on networking to enable them to assess their progress while sharing knowledge.

Mr James Robinson, the SNV Leader for Energy Sector, Ghana, gave the assurance that the SNV would continue to facilitate the activities of AGSI to sustain and promote solar energy in the country.

SOURCE:ENOCH DARFAH FRIMPONG/GRAPHIC ONLINE


Erratic power supply AKA Dumsor has always been hot topic these past few  years .Pronounced “doom-sore” (or more appropriately dum sɔ, “off and on”) is a popular Ghanaian term used to describe persistent, irregular and unpredictable electric power outages. Everybody from businesses to households has been affected one way or the other. In addition to this most Ghana residents have had to spend 200-300% more than what they used to spend on electricity five years ago.

2016 is an election year in Ghana and I hear lot of promises from political parties and politicians alike. These promises include, good roads, education, health, jobs and of course Energy .

Thousands of Ghanaians attended the much anticipated ‘Dumsor must stop vigil’ in Accra on Saturday.

The protestors clad in red and black outfits marched from the Total Filling station opposite the University of Ghana to the Tetteh Quarshie Interchange here in the Greater Accra Region.

The vigil was led by Yvonne Nelson and other celebrities such as Efya, DKB, Sydney,Van Vicker and a host of others. Watch the the video here 

Can we be brutally honest with each other as Ghana residents?

  • Our energy demands have risen over the years and we require more capacity
  • Energy prices have risen all over the world and reliance on only hydro isn’t sufficient for Ghana anymore
  • There is no political party that can reduce electricity tariffs to rates that were being paid 5-10 years ago. Even if anybody tried, it wouldn’t be sustainable
  • Electricity prices will continue to rise in the coming years and the time to change our mindset is now
  • Ghana needs a serious national policy plan /implementation on energy matters
  • All the are above play a key role in Dumsor

 

I have to admit times are pretty hard in Ghana these days. A lot of people are unable to pay their utility bills. Some have actually resorted to either connecting utilities illegally or using less. Many people in Ghana have been caught, some of them being foreign businesses and all .I also know a few people who switch off their refrigerators or deep freezers at night.

Another interesting fact is that for those who are buying new electrical appliances, price becomes the most important or deciding factor so much  such that efficiency is thrown out of the window.

While interacting with people we get these statements quite frequently: So you tell people to use less electricity and conserve it?” or “Your website has ideas on how to buy appliances, how does that relate to saving electricity?” The easiest way to save energy (or electricity) is to use less of it, but we have to be realistic in our approach. Our lifestyles are changing, and with increased pace of development, our need for appliances is increasing and so is our need for energy.  Thus the ideal mix to save energy will involve both conservation and efficiency. Now let us look at what is the difference between the two.

Dumsor:The politrix of Energy Efficiency VS Conservation

kicking dumsor out of Ghana

What is Energy Conservation?

Whenever you use less of something that means that you are trying to conserve it. So if you use a 1100cc vehicle instead of a V8 vehicle, it means that you are trying to conserve fuel (among many other reasons why you would prefer to use 1100CC over a V8 motor vehicle). If you switch off lights when they are not needed, then you are conserving energy. When you increase the temperature at which you operate your air conditioner from say, 24 degrees to 25 degrees, you are conserving energy. You also conserve energy when you switch off your DSTV decoder boxes and TVs when they are not in use.

Energy Conservation is all about using energy only when it is required and using it as much as needed for the job and not wasting any amount of it. It requires a conscious effort from the user of energy to make sure that there is no wastage on a regular basis. It requires a lot of behavioral change and needs effort. It may not need any investment always.

So what is Energy Efficiency?

Energy efficiency in contrast means using lesser energy to do the same job. When you buy a car that gives more mileage, you use less fuel to travel the same distance. When you buy a 5 star rated air conditioner instead of a 3 or 2 star rated air conditioner, it means that for the same usage and in same conditions, you use less electricity (for the same temperature at which you operate them). If you use a 5 star rated air conditioner at higher temperature, you double the effect and combine energy efficiency with energy conservation.

Energy efficiency has more impact on your personal finances. An efficient appliance may cost more than an inefficient appliance. Although the additional capital cost may get recovered in form of electricity savings. Energy efficiency may not require physical effort but requires change in people’s buying patterns. It requires knowledge of various products and their efficiencies. If people start buying more of efficient products, manufacturers will start producing more of them.

Conclusion

Both energy efficiency and energy conservation have the same goal.That is  to save energy and the same impact: saves money. Both can individually save energy but when coupled together can save double the amount of energy and money. It depends on your choices as to which one you like to do. A good mix of the two can ensure high savings with low investments and efforts. Finally ,going solar is a brilliant way to achieve all this in a single  move by trying  out our mini off-grid solar packages All these efforts will go a long way in curbing  Dumsor


Solar PV Power Paradigm Shift- The Ghana case.I am not that kind of a man, but I have been in the company of other men who in the midst of challenges rather saw them as opportunities to change the paradigm.

I strongly believe that very few energy planners and experts would disagree that Energy Independence for Ghana is an important, even urgent, goal.

But the question remains, is shifting the energy paradigm realistic; and if so, how?

And do our politicians and related institutions have the needed passion and spirit to embrace the new paradigm in our energy sector?

In recent years it has become so glaring that the conventional energy paradigm (fossil fuel tradition) has rapidly lost ground in comparison to the concept of Sustainable Development, as it is based on the intensive use of non-renewable fossil fuels — causing environmental degradation and posing Global Energy Security Risks.

Thus, a modification in our energy paradigm is necessary for our energy independence. A paradigm shift in the goals of energy policy should take place: toward independence, security of supply and climate change. Transition to a sustainable energy system is one of the critical challenges humankind faces in achieving energy independence in the new millennium.

Ghana is a country that has unbelievable solar energy potential; but, sadly, solar energy sources contribute only 0.1% (on-grid+ off-grid) of the total installed capacity for the total installed power capacity of 2104.5 MW in Ghana. (VRA: Facts & Figures).

Some people may say I am overly obsessed with the idea of solar energy for our small but incredibly energy-resource-rich nation.

It’s true – I am! But is it practical for Ghana to actually pursue this objective?

Talking of our potential, Wa — capital of the Upper West Region — has the highest level of solar irradiation (5.524 KWh/m2-day) across the country.

May is the month with the highest solar irradiation (5.897 KWh/m2-day), with August recording the lowest measurement (4.937kWh/m2-day) in Wa.

Akim Oda, conversely, is the location that records the lowest radiation (4.567kWh/m2-day) measurements across the country.

The highest measurement in Akim Oda was recorded in the month of April (5.176kWh/m2-day) and the lowest in August (3.802kWh/m2-day). See Table 1. 

As a nation we are blessed with daily sunshine that averages 5 hours, which ranges between about 7 hours and 4 hours for the northern and southern regions of the nation respectively. Ghana also has annual average daily solar radiation of about 4.5 to 5 KWm2/day. 

Table 1: Summary of Solar irradiation in kWh/m2-day – SWERA Report

Synoptic Station Ground

(kWh/m2-day)

Satellite

(kWh/m2-day)

% Error
Kumasi 4.633 5.155 -11.3
Accra 5.060 5.180 -2.3
Navrongo 5.505 5.765 -4.7
Abetifi 5.150 5.192 -0.8
Akuse 4.814 5.58 -15.9
Wa 5.520 5.729 -3.7
Akim Oda 4.567 5.177 -13.3
Wenchi 5.020 5.093 -1.5
Ho 5.122 5.223 -2.0
Kete Krachi 5.280 5.345 -1.3
Takoradi 5.011 5.200 -3.8
Yendi 5.370 5.632 -4.8
Bole 5.323 5.570 -4.6

 

Anti-islanding made easy: the anti-islanding box The anti-islanding box is a complete pre-wired and easy to install anti-islanding device consisting of a Ziehl anti-islanding relay (model UFR1001E or model SPI1021), the required circuit breakers and a 63A contactor. For specifications of the Ziehl relay

Anti-islanding made easy: the anti-islanding box
The anti-islanding box is a complete pre-wired and easy to install requured by law in certain countries for net meteringinstallations

Assuming we are to use only 23,854km² which is 10% of the total land area (238,585 km²) of Ghana to harness the sun’s energy with PV panels of 15% conversion efficiency, then Ghana would harvest 4,114 TerraWattHours of energy per year. 

This amount is equal to 2.42billion barrels of oil.

Consequently, if we juxtapose this amount with our current oil production in the Jubilee Field, then it is about 27 times the current crude oil production of Ghana per year.” See Chart A on Ghana PV Output.

In Ghana, Solar PV applications are gradually receiving acceptance in most places. However, despite improvements in local Research and Development (R&D) efforts, the body of knowledge on these technologies and their market potentials is considerably inadequate.

Launching major national initiatives on these technologies — such as the President’s 200,000 solar rooftops for households — requires a robust knowledge base and capacity.

In all, PV technologies are showing increasing promise in terms of efficiency improvements and cost. The estimated lifetime of PV modules are 25 years, and this makes them exceptionally attractive for investors.

The victron 500va phoenix offgrid inverter is excellent for small offgrid solar installations.its connectible to both Apple and Android smartphones, tablets, macbooks and other devices (VE.Direct Bluetooth Smart dongle needed)

The victron 500va phoenix offgrid inverter is excellent for small offgrid solar installations.its connectible to both Apple and Android smartphones, tablets, macbooks and other devices (VE.Direct Bluetooth Smart dongle needed)

Today, except for the Solar PV Panels produced in Kpone-Tema by Strategic Power Solutions (SPS) — a subsidiary of Strategic Security Systems International Limited, almost 80% the PV modules on the Ghanaian market are imported.

Solar PV systems can be extensively used for a wide range of electrical energy requirements: including solar home systems, water pumping, refrigeration and telecommunications that will reduce the load curve of electricity demand.

It has been estimated that solar rural electrification is about 30% cheaper than the cost of grid extension to rural communities that are about 18 to 20km from the nearest grid station.

However, there are still economic and institutional obstacles that limit this ability to self-generate power. For instance, while it is practical to install solar panels on a home, it is more difficult to scale-up these systems for commercial and industrial-sized projects. Scale is a critical issue in energy generation, as with scale comes lower project costs and greater efficiency.

For privately distributed generation projects, both small and large, to make greater contributions toward our national energy independence, there needs to be continued evolution of the bold policies that first introduced grid-connection rights and net metering in our renewable energy act.

The government must as a matter of urgency assist all consumers anywhere in the country to benefit from the net-metering incentive for solar power consumers. Again, due to the high upfront cost, government must establish a renewable energy revolving credit fund whereby solar consumers can borrow money to finance solar systems without making large up-front payments and without paying high interest rates to banks or private financiers.

Also, the PURC must establish a coherent pricing tariff for distributors to buy power from private solar-farm developers. This could unlock an untapped source of clean, reliable, economical power for Ghana.

While not easy to accomplish, these advances are achievable – and, importantly, they don’t need to cost the tax payers any money. However, they depend on the political will and leadership of our energy-sector authorities.

This an original story by Maxmillian Kwarteng and has been featured on BFT online


Inverter Air conditioners & the rising electricity tariffs in Ghana

My Nigerian friends often say Ghanaian folk have a signature look, very dark skin and red eyes. This they claim is as a result of the scorching sun in Ghana. Ghana is hot o…….

Average temperatures often range between  35-40 degree Celsius with high levels of humidity . Due to the nature of the weather in Ghana Air-conditioning is no longer a luxury.Most homes and offices who can afford , have invested in one form of cooling or the other while those who cant have settled for fans.But what happens when there is erratic power supply and load shedding  AKA Dumsor  in Ghana? I bet that is another topic for another day.

KIDS COOLING OFF IN ACCRA GHANA

little children cooling off in bowls of water at home on a sunny day in Accra,Ghana

Recent electricity price hikes in Ghana have made Air Conditioners a pain point for most who are concerned about their electricity bills. Electricity bills increase significantly when an air conditioner is added to the list of appliances in a household. Although it is difficult to significantly reduce the “big” impact of an air conditioner on your electricity bills, it can be managed by choosing the right technology. Also by following the right installation/maintenance/operation procedure and also putting into consideration the insulation of room where the air conditioner is being operated.

The latest and the most efficient technology that is available on market today is the Inverter Technology for air conditioners. Inverter technology is designed in such a way as to save 30-50% of electricity (units consumed) compared to regular air conditioning systems.At Nocheski ,we live up to our promise of driving your business with technology and we recommend the use of energy efficient appliances such as inverter Air-conditioners from brands including LG,Daikin,Carrier Samsung , Gencool, Hisense just to name a few.

How do air conditioners work?

For most people, air conditioner just throws cool air at the temperature one sets it at. But does it really work that way? In principle, an air-conditioner during the cooling process, takes the indoor air, cools it by passing it through evaporator and releases it back in the room. It is quite opposite to how our good old air coolers used to work. Air coolers used to take outside air, cool it with water and throw it in. But air conditioners just work on internal air. Along with evaporator an air conditioner also has a compressor that compresses the gas (refrigerant) in the AC to cool it that in turn cools the incoming internal air from the room.

In a regular air conditioner:

The compressor is either off or on. When it is on, it works at full capacity and consumes the maximum electricity it is designed to consume. If the thermostat reaches the temperature level set in the AC, the compressor stops and the fan (in AC) continues to operate. Then the thermostat senses that the temperature has increased, the compressor starts again.

https://www.youtube.com/watch?v=DvvPDm7I6W0

Air Conditioners with Inverter Technology

The inverter technology works like an accelerator in a car. When compressor needs more power, it gives it more power. When it needs less power, it gives less power. With this technology, the compressor is always on, but draws less power or more power depending on the temperature of the incoming air and the level set in the thermostat. The speed and power of the compressor is adjusted appropriately. Originally developed in Japan for use in air-conditioning systems, digital inverter technology is now applied globally in appliances such as refrigerators, washing machines and even microwave ovens.

digital inverter air conditioners,fridges, are getting popular in Ghana

Samsung has a new line-up of household appliances for the digital home that saves on cost and offers more features.

What is benefit of Inverter Technology?

Air conditioner is designed for a maximum peak load. So a 1.5hp AC is designed for a certain size of room and 1 hp for a different size. But not all rooms are same . A regular air conditioner of 1.5hp capacity will always run at peak power requirement when the compressor is running. An air conditioner with inverter technology will run continuously but will draw only that much power that is required to keep the temperature stable at desired levels.  Hence Automatic adjustment of capacity based on the requirement of the room it is cooling and so requiring less electricity for efficient operation although air conditioner with Inverter Technology adjusts its capacity based on the room requirement, it is very important to install a right sized air conditioner in a room.

Its important  that you evaluate the room and air conditioner capacity before you make a purchase.Moreover digital inverter technology appliances such at home further increases the business case for installing solar for home.This as a result of highly reduce electrical load. Check out our off-grid solar  offers for 2-5 bedroom homes .For further clarifications on this subject ,you may contact our product specialist in Tema  here


What is Ghana’s solar power potential ? The country is blessed is with decent solar  irradiation year round.Ghana is in fact  notorious for its scorching sunlight.

Before I begin, permit me to ask this, if Oil and Gas for Thermal Power Plants and the other fossils are that “Cheap” as some want us to believe, why then are electricity rates still going up?Every hour, the sun radiates more energy onto our earth than the entire human population uses in one whole year. The technology required to harness the power of the sun is available now. Solar power alone could provide all of the energy Ghanaians consume and there is no shortage of solar energy like there has been with the Akosombo Dam in recent days. The truth is, we do not need advanced math skills to follow and perform the solar arithmetic to prove that Ghana’s energy independence could be achieved with solar energy.

Every square meter (1m²) of the earth’s surface, when exposed to direct sunlight, receives about 1000 watts (1 kilowatt) of energy from the sun’s light. In reality, this power per hour for every square meter (1m²) might be more or less, depending on the angle of sunlight, which changes with the time of day, and the geographical location. On average, the sub Saharan region of Africa receives about (3 – 4 kilowatt per hour) of solar energy.

Nonetheless, studies have revealed promising potential for this resource in Ghana. According to the SWERA Ghana Project report, Wa, the capital of the Upper West region, has the highest level of solar irradiation (5.524 KWh/m2-day) across the country. May is the month with the highest solar irradiation (5.897 KWh/m2-day), with August recording the lowest measurement (4.937kWh/m2-day) in Wa. Akim Oda on the contrary is the location that records the lowest radiation (4.567kWh/m2-day) measurements across the country. The highest measurement in Akim Oda was recorded in the month of April (5.176kWh/m2-day) and the lowest in August (3.802kWh/m2-day).

 

Table 1: Summary of Solar irradiation in kWh/m2-day – SWERA Report

Synoptic Station Ground

(kWh/m2-day)

Satellite

(kWh/m2-day)

% Error
Kumasi 4.633 5.155 -11.3
Accra 5.060 5.180 -2.3
Navrongo 5.505 5.765 -4.7
Abetifi 5.150 5.192 -0.8
Akuse 4.814 5.58 -15.9
Wa 5.520 5.729 -3.7
Akim Oda 4.567 5.177 -13.3
Wenchi 5.020 5.093 -1.5
Ho 5.122 5.223 -2.0
Kete Krachi 5.280 5.345 -1.3
Takoradi 5.011 5.200 -3.8
Yendi 5.370 5.632 -4.8
Bole 5.323 5.570 -4.6

 

This estimate tells that sunlight will provide useful solar energy for about 4 to 6 hours per day because during the early hours and late hours of the day the angle of the sun’s light is too low.Therefore, let us assume for every square meter (1m²) exposed to continuous direct sunlight [in an optimal geographical location] for an average of 4.5 hours a day, we will have received 4.5 hours x 1000 watts = 4500 watthours (4.5kwh/m²) of solar energy during the course of a day (Ghana’s solar power potential). It would be great if 100% of the sunshine became electricity, but solar energy and electricity are not the same. Technology accomplishes the conversion of solar energy to electricity.

What is Ghana's solar power potential?

Revelers enjoy sunlight and water at Ghana’s famous Labadi beach in Accra

Conversion of one form of energy to another always causes a loss of energy. In other words, the new form of energy will be less than the original. Efficiency is the word used to describe the difference in power resulting from the conversion of one form of energy to another. The efficiency of commercially available solar panels (PV) is now between 15% – 40.7%. This means that when a solar panel converts the sun’s light to electricity, only about 15 to 40.7 percent of the energy in the sunlight becomes electricity. The same thing is true of gasoline in your car and other thermal engines. Your car’s engine can only convert about 25 percent of the energy in gasoline to mechanical energy that turns the wheels.

With an average efficiency of 15 to 40.7 percent, every square meter (1m²) of solar photovoltaic cells (PV) would produce (4.5 kilowatthours of solar energy multiplied by 15% =) between 0.68 kilowatthours of electric energy per day.

Solar panels (PV) covering an area of 100m²(1 Plot of Land) would produce 100 x .68 = 68 kilowatthours of electricity per day. It is worth noting that 68kwh per day is a lot of electricity for a single family home.

 

Let’s juxtapose this arithmetic nationwide to the unused land surface:

– Size of Unreserved forest land in Ghana = 5 x 10³km² è 5 x 10⁹m².

– Assuming a Conversion Efficiency (Solar Panels) of 15%.

– Average Solar Irradiation 4.5kilowatthours (kwh) è 4500wh/day

– Annual average solar radiation = 4.5 x 365 è 1642.5kwh/m².y

– Assuming a Performance ratio, coefficient for losses of 0.75

So, 0.15 x 1642.5kwh/m².y x 5 x 10⁹m² x 0.75  è 923.9Gwh/y

What is Ghana's solar power potential ? The country is blessed is with decent solar  irradiation year round.Ghana is in fact  notorious for its scorching sunlight. power issues still prevailin May 2015 #DumorMustStop campaign was spearheaded by Ghanaian actress Yvonne Nelson and was patronized by many other celebrities

in May 2015 #DumorMustStop campaign was spearheaded by Ghanaian actress Yvonne Nelson and was patronized by many other celebrities

Like in Germany where Solar energy powered 50% of its midday electricity needs on May 26, 2012, this amount of energy can be used for same in Ghana.It is interesting to note that this amount of energy has been calculated from an area of 5,000km² which is only 2% of the total surface area of Ghana.In 2004, Ghanaians consumed 5,158 gigawatthours (GWh) of electricity. NEDCO alone contributed 340GWh out of this figure. This contribution from NEDCO is only one third of my estimate of the calculated solar potential. It is estimated that about half of this amount is consumed by domestic (or residential) consumers for household uses such as lighting, ironing, refrigeration, air conditioning, television, radio and the like.

In conclusion, let me say that the improved technology surrounding solar power is very significant. It has brought clean energy within practical use. Given the significant environmental benefits, there is a very strong case for government intervention to accelerate the switch to solar power. Considering Ghana’s solar power potential,  the reluctance to switch to solar power is delaying our national progress in living standards.

Source: Maxmillian Kwarteng | Gramax Energy Group – GEG | mkwarteng21@gmail.com


Salima Visram is the 23-year-old entrepreneur behind the Soular, a backpack company equipped with solar panels, which allow children who don’t have access to electricity in rural parts of Africa to study at night without having to use an expensive and carcinogenic kerosene lamp. Soular will be launching a new one-for-one model today, through the sale of trendy backpacks on HSN in collaboration with Disney, alongside their new movie, Queen of Katwe, which is set in rural Uganda, where the kerosene lamp is central to the plot of the story.

“I was inspired to launch Soular after seeing how some children in Kenya, where I grew up, were not able to study every day and get into secondary school, which perpetuated the vicious cycle of poverty,” Visram said.

these school children seem very excited about their solular backpacks

these school children seem very excited about their solular backpacks

Oscar winner Lupita Nyong’o, who stars in Disney’s Queen of Katwe, is a supporter of Soular Backpack. Nyong’o and Disney went with the Soular team to Katwe in Uganda to distribute backpacks there in July.  Soular will also be showcased at the premiere of the movie in Hollywood later this September.

“On every Soular Backpack, there’s a quote from Lupita that reads, ‘The Power Is In Your Step,’” Visram said. watch the video here

Visram launched Soular by starting a crowdfunding campaign, which exceeded its goal by 25% raising $50,000. Soular has since distributed hundreds of backpacks across Kenya, Uganda and Tanzania.

“So far, we’ve distributed backpacks to 500 children but we’ve realized that with one backpack in the family, on average 3 children are able to study with it,” Visram said.

Soular’s new one-for-one backpack

Soular’s new one-for-one backpack

Visram has big plans for Soular.

“The next phase of Soular would be to scale the one-for-one model across North America in a big way and make sure that everyone who needs a backpack is aware that they could buy a backpack that gifts light to a child in need,” Visram said. “We’re excited to position ourselves as a leading backpack company that stands to create social impact.”

Soul’s new one-for-one backpack is for sale on HSN for $49.95 in two colors, navy and white

Visram stays committed to making Soular a company that finds sustainable solutions to poverty.

Salima Visram, founder of Soular, with the new backpack for sale on HSN

Salima Visram, founder of Soular, with the new backpack for sale on HSN

“My vision for Soular is to make a holistic system of interventions and services that give people the tool to alleviate themselves from poverty,” Visram said. “We want to partner with a bank, so that the money saved on kerosene every month goes into a secondary education fund for the child. We want to set up micro-franchises in rural villages to sell lamps and batteries, in order to generate employment. We’ve just moved production to Kenya, which is creating more employment and impact within the region. Realizing how electricity is at the center of education, health and economic development is also something that inspired me to start it.”

 


100 MW Ghana Solar Farm Gets Funding

Home Energy Africa, which specializes in the development and sales of renewable energy products for businesses, governments, and residential homes in Africa, has obtained a $705,000 grant from the US Trade and Development Agency (USTDA) for the development of a solar PV power generation project in Ghana.

Projected to begin construction in 2017, ESI Africa reports that this solar project will generate 100 MW of power, providing electricity to approximately 80,000 average homes in the country.

The agreement between the two countries was signed by Robert P. Jackson, the US Ambassador to Ghana, and Charles Sena Kwadzo Ayenu, CEO of Home Energy Africa.

“Lack of power is a challenge we see across sub-Saharan Africa. Two out of three people in this region lack access to electricity. That hinders business, and it hinders prosperity. We’ve made increasing access to power one of the top priorities for our bilateral relationship. Today’s grant is just one more way we’re bringing together government and the private sector to make Ghana’s future brighter,” said Jackson.

Boosting the Supply of Electricity

“One of Ghana’s paramount constraints to sustainable economic growth is the country’s inadequate electric power supply. This grant will support us in bringing our solar power PV project to financial close in order to fill the gap in power supply, meet Ghana’s goals for clean and sustainable energy, help create over 200 jobs to local communities and provide electricity to at least 80,000 average homes in Ghana,” said Mr. Ayenu.

Ayenu stated Ghana presently has 2,450 MW of installed capacity, adding: “The government of Ghana aspires to double that capacity to 5,000 MW this year, including 10% from renewable sources.”

The USTDA grant targets providing technical assistance to Home Energy Africa by using GreenMax Capital Advisors, an American firm, in finalizing the legal and financial details necessary to implement the project. Project assistance includes preparation for power purchase agreement negotiations with the Electricity Company of Ghana, services contracts, and financial arrangements.

Ayenu said the signing of the grant was the last barrier that the company has had to cross for work to begin on the project. He added that the firm has also acquired a 30% equity funding agreement for the $150 million project.

Originally published on Planetsave.